
Swarm Intelligence Research for Robocup 
 

 

What is swarm intelligence? 
Swarm intelligence is a branch of artificial intelligence that is inspired by the collective behavior of 

social animals, such as ants, bees, and birds. Some of the most commonly used algorithms in swarm 

intelligence include: 

1. Ant Colony Optimization (ACO): ACO is a metaheuristic algorithm that is inspired by the 

behavior of ants as they search for food. The algorithm uses the concept of "pheromones" to 

guide the ants towards the most promising solutions. 

2. Particle Swarm Optimization (PSO): PSO is an optimization algorithm that is inspired by the 

behavior of birds as they flock together. The algorithm uses the concept of "velocity" and 

"personal best" to guide the particles towards the optimal solution. 

3. Artificial Bee Colony (ABC): ABC is an optimization algorithm that is inspired by the behavior 

of bees as they search for nectar. The algorithm uses the concept of "scout bees" and 

"employed bees" to guide the bees towards the optimal solution. 

4. Artificial Fish Swarm Algorithm (AFSA): AFSA is an optimization algorithm that is inspired by 

the behavior of fish as they swim in a school. The algorithm uses the concept of "schooling 

behavior" and "random walk" to guide the fish towards the optimal solution. 

Links and resources: 

• Ant Colony Optimization: https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms 

• Particle Swarm Optimization: https://en.wikipedia.org/wiki/Particle_swarm_optimization 

• Artificial Bee Colony: https://en.wikipedia.org/wiki/Artificial_bee_colony_algorithm 

• Artificial Fish Swarm Algorithm: https://www.sciencedirect.com/topics/computer-

science/artificial-fish-swarm-algorithm 

Ant Colony Optimization 
Ant Colony Optimization (ACO) is a metaheuristic algorithm that is inspired by the behavior of ants as 

they search for food. The goal of ACO is to find the optimal or near-optimal solution to a problem by 

simulating the behavior of ants as they search for food. The algorithm is particularly well-suited to 

problems that involve finding the shortest path between two points, such as the traveling salesman 

problem. 

ACO operates by simulating a colony of ants that move through a problem space, leaving behind a 

trail of "pheromones" as they move. The pheromones are used to guide other ants towards 

promising solutions. As the ants move through the problem space, they also update the pheromone 

trail, making it stronger or weaker depending on the quality of the solutions that they find. 

The inner workings of ACO are as follows: 

• Initially, each ant is placed at a random point in the problem space. 

• The ant then selects the next point to move to based on the pheromone trail and the 

heuristic information of the problem. 

https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Artificial_bee_colony_algorithm
https://www.sciencedirect.com/topics/computer-science/artificial-fish-swarm-algorithm
https://www.sciencedirect.com/topics/computer-science/artificial-fish-swarm-algorithm


• As the ant moves, it leaves behind a trail of pheromones. 

• The pheromone trail is updated based on the quality of the solutions found by the ants. 

• The process is repeated until a stopping criterion is met. 

There are several programming libraries available to implement ACO. Some of the most popular 

libraries include: 

• ACOpy: https://acopy.readthedocs.io/ 

• PyAntColony: https://pypi.org/project/pyantcolony/ 

• ACOR: https://pypi.org/project/acor/ 

• PyACO: https://pypi.org/project/pyaco/ 

 

These libraries are usually implemented in Python, but other languages such as Java, C#, and Matlab 

also have libraries available for implementing ACO. 

 

Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a metaheuristic algorithm that is inspired by the behavior of 

birds as they flock together. The goal of PSO is to find the optimal or near-optimal solution to a 

problem by simulating the behavior of a group of particles, each representing a candidate solution, 

as they move through the problem space. PSO is particularly well-suited to optimization problems 

that have a large number of variables and can be used to find the global minimum or maximum of a 

function. 

The inner workings of PSO are as follows: 

• Initially, a set of particles are randomly placed in the problem space. Each particle has a 

position and a velocity. 

• The position and velocity of each particle are updated based on the current global best 

solution, the personal best solution of the particle, and a random component. 

• The global best solution is updated based on the position of each particle. 

• The process is repeated until a stopping criterion is met. 

 

The PSO algorithm is computationally simple, easy to implement and is relatively insensitive to the 

initial conditions. 

There are several programming libraries available to implement PSO. Some of the most popular 

libraries include: 

• PySwarmOptimizer: https://pyswarmoptimizer.readthedocs.io/ 

• PySwarms: https://pyswarms.readthedocs.io/ 

• PyParticle: https://github.com/adambielski/PyParticle 

• DEAP: https://deap.readthedocs.io/en/master/api/algo.html#deap.algorithms.eaSimple 

 

These libraries are usually implemented in Python, but other languages such as Java, C#, and Matlab 

also have libraries available for implementing PSO. 

 

 

 

https://acopy.readthedocs.io/
https://pypi.org/project/pyantcolony/
https://pypi.org/project/acor/
https://pypi.org/project/pyaco/
https://pyswarmoptimizer.readthedocs.io/
https://pyswarms.readthedocs.io/
https://github.com/adambielski/PyParticle
https://deap.readthedocs.io/en/master/api/algo.html#deap.algorithms.eaSimple


Artificial Bee Colony 
Artificial Bee Colony (ABC) is a metaheuristic algorithm that is inspired by the behavior of bees as 

they search for nectar. The goal of ABC is to find the optimal or near-optimal solution to a problem 

by simulating the behavior of a colony of bees as they search for food. The algorithm is particularly 

well-suited to optimization problems that have a large number of variables and can be used to find 

the global minimum or maximum of a function. 

The inner workings of ABC are as follows: 

• Initially, a set of "employed bees" and "onlooker bees" are randomly placed in the problem 

space. Each bee has a position and a fitness value. 

• The employed bees select a new position to move to by modifying their current position 

based on a random component. 

• The fitness value of the new position is then evaluated. 

• The onlooker bees select a new position to move to based on the probability distribution of 

the fitness values of the employed bees. 

• The employed bees and the onlooker bees then replace the worse solutions in the 

population with the new solutions. 

• A certain number of "scout bees" are employed to explore the problem space and find new 

food sources. 

• The process is repeated until a stopping criterion is met. 

 

There are several programming libraries available to implement ABC. Some of the most popular 

libraries include: 

• PyBeeColony: https://pypi.org/project/pybeecolony/ 

• ABCpy: https://pypi.org/project/abcpy/ 

• JABC: https://github.com/ahmetkucuk/JABC 

 

These libraries are usually implemented in Python, but other languages such as Java, C#, and Matlab 

also have libraries available for implementing ABC. 

It's important to note that the Artificial Bee Colony algorithm is a heuristic method, it is not 

guaranteed to find the global optimal solution, it is more likely to find a good solution that is close to 

the global optimal one. 

 

Artificial Fish Swarm Algorithm 
Artificial Fish Swarm Algorithm (AFSA) is a metaheuristic optimization algorithm that is inspired by 

the behavior of fish as they swim in a school. The goal of AFSA is to find the optimal or near-optimal 

solution to a problem by simulating the behavior of a group of artificial fish as they move through the 

problem space. The algorithm is particularly well-suited to optimization problems that have a large 

number of variables and can be used to find the global minimum or maximum of a function. 

The inner workings of AFSA are as follows: 

• Initially, a set of artificial fish are randomly placed in the problem space. Each fish has a 

position and a fitness value. 

• The position and fitness of each fish are updated based on the following three behaviors: 

https://pypi.org/project/pybeecolony/
https://pypi.org/project/abcpy/
https://github.com/ahmetkucuk/JABC


• Instinctive behavior: The fish move towards the prey (optimal solution) following a 

random walk. 

• Collective behavior: The fish move towards the average position of the school. 

• Individual behavior: The fish move towards their personal best solution. 

• The process is repeated until a stopping criterion is met. 

 

AFSA is computationally simple, easy to implement and it is relatively insensitive to the initial 

conditions. 

There are some libraries available to implement AFSA, But it's not as popular as other algorithm such 

as PSO and ACO, so the number of libraries is limited. Some of the libraries include: 

• PyFish: https://pypi.org/project/pyfish/ 

• ArtificialFishSwarm: https://pypi.org/project/ArtificialFishSwarm/ 

• ArtificialFishSwarmOptimization: https://pypi.org/project/ArtificialFishSwarmOptimization/ 

 

These libraries are usually implemented in Python, but other languages such as Java, C#, and Matlab 

also have libraries available for implementing AFSA. 

It's important to note that the Artificial Fish Swarm Algorithm is a heuristic method, it is not 

guaranteed to find the global optimal solution, it is more likely to find a good solution that is close to 

the global optimal one. 

 

Real-world applications for these algorithms 
here are some examples of real-world problems and applications that can be solved using each of the 

four algorithms: 

Ant Colony Optimization (ACO): 
• Traveling salesman problem (TSP): The TSP is a classic problem in which the goal is to find the 

shortest path that visits a given set of cities and returns to the starting city. ACO has been 

successfully applied to this problem and has been shown to be effective in finding near-

optimal solutions. 

 
 

https://pypi.org/project/pyfish/
https://pypi.org/project/ArtificialFishSwarm/
https://pypi.org/project/ArtificialFishSwarmOptimization/


Explanation of the code: 

• The first step is to import the necessary libraries, in this case, numpy and the acopy 

library. 

• Then the problem is defined with a distance matrix, in this case, it is a 2D numpy array 

where the element at (i, j) is the distance between city i and city j 

• Next, the AntColony class from the acopy library is imported and an instance is created. It 

takes the distance matrix and the number of ants as input. 

• The run method is called on the colony instance for a given number of iterations. It runs 

the ACO algorithm for the given number of iterations. 

• The best_solution attribute of the colony instance is used to get the best solution found 

by the algorithm. 

• Finally, the best solution is printed. 

This script is a basic example of how the acopy library can be used to solve the TSP 

problem. The library provides several other parameters and methods that can be used to 

customize the behavior of the algorithm and to get more information about the solutions 

found. You can check the documentation of the library for more details on how to use it: 

https://acopy.readthedocs.io/ 

 

• Vehicle routing problem (VRP): The VRP is a problem in which the goal is to find the most 

efficient routes for a fleet of vehicles to visit a set of customers. ACO has been applied to this 

problem and has been shown to be effective in finding near-optimal solutions. 

• Image segmentation: ACO algorithm can be used for image segmentation by creating a 

pheromone trail for each pixel, representing the likelihood of it belonging to a segment. 

• Job shop scheduling problem: ACO algorithm can be used to find the best schedule for 

different jobs in a factory by creating a pheromone trail that represents the likelihood of a 

job being scheduled in a particular time slot. 

 

Particle Swarm Optimization (PSO): 
• Function optimization: PSO can be used to find the global minimum or maximum of a 

mathematical function. 

• Portfolio optimization: PSO can be used to optimize the selection of stocks for a portfolio in 

order to maximize returns and minimize risk. 

• Neural network training: PSO can be used to train neural networks by adjusting the weights 

and biases of the network to minimize the error function. 

https://acopy.readthedocs.io/


 
This script uses the make_classification function from scikit-learn to generate a random 

dataset for classification. The dataset is split into training and test sets. Then it defines a 

fitness function that is used by the PSO algorithm to optimize the parameters of a neural 

network. The fitness function creates a neural network with the given parameters, trains the 

model, and evaluates it using the test set. The goal of the PSO algorithm is to minimize the 

negative of the accuracy of the model. The script runs the PSO algorithm to find the optimal 

parameters for the neural network and prints the optimal parameters at the end. 

It's worth noting that this is just a simple example and the script is not optimized for 

performance and it may need additional debugging and fine-tuning to be used in real-world 

scenarios. Also, the script uses a simple Neural Network with one hidden layer and it could 

also be used to optimize other parameters such as the number of neurons, the activation 

function, the learning rate, etc. 

 

• Inverse kinematics: PSO can be used to find the optimal inverse kinematics solution of a 

robotic arm. 

 

Artificial Bee Colony (ABC): 
• Function optimization: ABC can be used to find the global minimum or maximum of a 

mathematical function. 

 

 

 

 

 

 

 



• Feature selection: ABC can be used to select the most important features in a dataset for a 

machine learning model. 

 
The ABC algorithm is used to select the most informative features from the dataset, which 

are then used to train the machine learning model. The num_features parameter in the 

select_features function specifies the number of features to select. In this example, the 

number of selected features is set to 5. The selected features are then printed and used to 

train the model, and the model's accuracy is then tested using the test data. 

Note: This example uses the pyABC package which is not a built-in package and need to be 

installed. 

 

• Design optimization: ABC can be used to optimize the design of a product or system in order 

to improve performance and reduce costs. 

• Clustering: ABC can be used for clustering by creating a set of "food sources" that correspond 

to different clusters, and the bees represent the data points. 

 

Artificial Fish Swarm Algorithm (AFSA): 
• Function optimization: AFSA can be used to find the global minimum or maximum of a 

mathematical function. 

• Scheduling: AFSA can be used to find an optimal schedule for a set of tasks or jobs. 



• Design optimization: AFSA can be used to optimize the design of a product or system in order 

to improve performance and reduce costs. 

• Image processing: AFSA can be used for image processing tasks such as image compression 

and denoising. 

 

It's worth noting that these algorithms are not guaranteed to find the global optimal solution, they 

are more likely to find a good solution that is close to the global optimal one. 

 

Basic architecture and approach to the Robocup soccer problem 
To solve this problem, the following hardware components and algorithm would be required: 

Hardware components: 

• Robots: Each robot would need to be equipped with wheels or legs for movement, sensors 

such as cameras or LIDAR for perceiving the environment, and communication devices such 

as WiFi or Bluetooth for communicating with other robots. 

• Ball: The ball would need to be equipped with a beacon or other tracking device to allow the 

robots to locate it in the field. 

• Field: The field would need to be equipped with cameras or other sensors to allow the robots 

to locate the positions of the other robots and the goals. 

 

Algorithm: 

• Multi-Agent Reinforcement Learning (MARL): This algorithm would allow the robots to learn 

and adapt their behavior in real-time based on the positions of the other robots, the ball, and 

the opponents. Each robot would learn to take positions that optimize their chances of 

scoring while also taking into account the positions of the other team members. 

• Particle Swarm Optimization (PSO) or Ant Colony Optimization (ACO) could be used as a sub-

algorithm for global optimization of robot's behavior, as they can be used to find the optimal 

or near-optimal solutions in terms of the robot's positions. 

 

The algorithm would work as follows: 

• Initially, the robots would be placed in random positions on the field. 

• Using the sensors, the robots would perceive the positions of the other robots, the ball, and 

the opponents. 

• Using MARL, each robot would learn to take positions that optimize their chances of scoring 

while also taking into account the positions of the other team members. 

• Using PSO or ACO, the algorithm would find the optimal or near-optimal solutions in terms of 

the robot's positions. 

• The process would be repeated in real-time as the positions of the robots, ball and 

opponents change on the field. 

 

It's worth noting that this problem is a difficult one to solve, and it would require a lot of testing and 

fine-tuning to get the robots to perform optimally. Additionally, the problem could be simplified by 

not considering the opponents' positions and only focusing on the ball and other team members 

positions. 


